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ABSTRACT 

In this paper, we deal with the differential geometric properties of robot end-effector’s 

motion by using the curvature theory of timelike ruled surfaces with timelike directrix. 
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1. INTRODUCTION 

  The methods of robot trajectory control currently used are based on 

PTP point to point and CP continuous path methods. These methods are 

basically interpolation techniques and therefore, are approximations of the 

real path trajectory (see Paul (1979)). In such cases, when a precise trajectory 

is needed or we need to trace a free formed or analytical surface accurately, 

the precision is only proportional to the number of intermediate data points 

for teach-playback or offline programming.  

 

For accurate robot trajectory, the most important aspect is the 

continuous representation of orientation whereas the position representation 
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is relatively easy. There are methods such as homogeneous transformation, 

Quaternion and Euler Angle representation to describe the orientation of a 

body in a three-dimensional space (see Ryuh and Pennock (1988)). These 

methods are easy in concept but have high redundancy in parameters and are 

discrete representation in nature rather than continuous. Therefore, a method 

based on the curvature theory of a ruled surface has been proposed as an 

alternative in the dissertation of  Ryuh (1989). 

 

The ruled surfaces are swept out by a straight line moving along a 

curve. McCarthy and Roth (1981) have studied in kinematics by many 

investigators based primarily on line geometry. Since a ruled surface is a 

special case of a smooth surface, its differential geometry can be developed 

by using traditional techniques of vector calculus. McCarthy (1987) and 

McCarthy and Roth (1981) used this approach to obtain a scalar curvature 

theory of line trajectories for spatial kinematics. Wang et al. (1997) set up 

curvature theory in kinematic geometry of mechanism which is in the form 

and content from plane to space motion. 

 

The robot end-effector motion may also be completely described by 

the ruled surface and the spin angle. The positional variation and the angular 

variation of the rigid body are determined by the curvature theory of a ruled 

surface in Ryuh and Pennock (1988). Ryuh et al. (2006) developed dual 

curvature theory of the ruled surface and applied this theory into the robot 

trajectory planning. 

 

Ruled surfaces in Minkowski 3-space have been studied in a lot of 

fields (see Ogrenmis et al. (2006)). Coken et al. (2008) investigated parallel 

timelike ruled surfaces with timelike rulings. More information about 

timelike ruled surfaces in Minkowski 3-space may also be found in Turgut 

and Hacısalihoglu (1997) and (1998). Recently Ekici et al. (2008) have 

studied the robot end-effector motion for timelike ruled surfaces with 

timelike ruling. 

 

 

2. PRELIMINARIES 

Let 3

1  be a Minkowski 3-space with Lorentzian 

metric 2 2 2 2

1 2 3ds dx dx dx   . The norm of 
3

1x  is denoted by  

 ,x x x   where  ,     is the induced inner product in 
3

1 .  
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We say that Lorentzian vector x  is spacelike, lightlike or timelike if  

, 0x x   and 0x  , , = 0,x x  , 0x x  , respectively. A smooth regular 

curve  3

1: I    is said to be a timelike, spacelike or lightlike curve if 

the velocity vector ( )s  is a timelike, spacelike, or lightlike vector, 

respectively (see O’neill (1983)). 

 

For any
1 2 3( , , )x x x x and 3

1 2 3 1( , , )y y y y  , the Lorentzian vector 

product of x  and y  is defined as 

 

2 3 3 2 1 3 3 1 2 1 1 2( ,  ,  ).x y x y x y x y x y x y x y                            (1) 

 

1 2 3 3 1 2 2 3 1      .e e e e e e e e e                                       (2) 

 

where {e1, e2, e3} are the base of the space 3

1 .  

 

A surface in 3

1  is called a timelike surface if the induced metric on 

the surface is a Lorentz metric, that is, the normal on the surface is a 

spacelike vector. A timelike ruled surface is obtained by a timelike straight 

line moving a spacelike curve or by a spacelike straight line moving a 

timelike curve. The timelike ruled surface M is given by the parametrization, 

 
3

1:  ,   ( , ) ( ) ( )I s u s uX s                                   (3) 

in 3

1  (see Turgut and Hacısalihoglu (1997)). 

 

 

3. REPRESENTATION OF ROBOT TRAJECTORY BY A 

RULED SURFACE 

 

The motion of a robot end-effector is referred to as the robot 

trajectory. The point fixed in the end-effector will be referred to as the Tool 

Center Point and denoted as TCP (see Ryuh (1988)). Path of a robot may be 

represented by a tool center point and tool frame of end-effector. In Fig. 1, 
the tool frame is represented by three mutually perpendicular unit vectors {O, 

A, N} where O is the orientation vector (spacelike), A is the approach vector 

(timelike), N is the normal vector (spacelike). The ruled surface generated by 
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O is chosen for further analysis without loss of generality. The spin angle   

which represents the rotation from the surface binormal vector
bS , about A. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Ruled surface generated by O of tool frame 

 

3.1 Frames of Reference 

 

Let 
3

1:  

     s ( )

I

s








 

 

where {0} I , be a differentiable timelike curve in 3

1  parameterized by arc-

length.  

 

While the robot moves each vector of tool frame in end-effector, it 

determines its own ruled surface. The path of tool center point is directrix and 

O is the ruling. As ( )s  is a timelike curve and ( )R s  is spacelike straight 

line, let us take the following timelike ruled surface as 

 

( , ) ( ) ( )X s u s uR s                                           (4) 

 

 

where the space curve ( )s  is the specified path of the TCP (called the 

directrix of the timelike ruled surface), u  is a real-valued parameter, and 
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( )R s  is the vector generating the timelike ruled surface (called the ruling) 

(Turgut and Hacısalihoğlu, (1998)).  

 

Note that to determine the orientation of tool frame relative to the 

timelike ruled surface, we define a surface frame [O, , ]n bS S at the TCP as 

shown in Figs. 1 and 2. 
nS  is the unit spacelike normal vector  and 

bS  is the 

unit timelike binormal vector of the timelike ruled surface. They are 

determined as follows 

                                                                                                                                                                                                                                                                                                                                                            

( )
,   ,   Os u

n b n

s u

X XR s
O S S S

X X


   

 
                        (5) 

 

where= ( )R s . 

 

 
Figure 2: Frames of reference 

 

In Figure 2, the generator trihedron is used to study the positional and 

angular variation of the timelike ruled surface. r is the unit generator vector 

(spacelike), t is the unit central normal vector (spacelike) and k is the unit 

tangent vector (timelike) defined as 

 

                
1

( ),   ( ),   .r R s t R s k r t   


                                (6) 
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  The origin of the generator trihedron is referred to as the striction 

point of the timelike ruled surface and the locus is called the striction curve, 

which is defined by 

 

                     ( ) (s) (s) (s)s R                                        (7) 

 

where the parameter 

 

                     ( ) ( ), ( ) /s s R s R                       

 

indicates the position of the TCP relative to the striction point of the timelike 

ruled surface.   

 

The first-order angular variation of the generator trihedron may be 

expressed in the matrix form as 

 

                

0 1 0
1

1 0

0 0

r r
d

t t
ds

k k





     
     

  
     
          

                                                        (8) 

 

where the geodesic curvature   is defined as 

 

                           ,R R R     .                                                             (9) 

 

Moreover, the Darboux vector of the generator trihedron is 

                              
1

rU r k


  
 

                                                            (10)  

                                                                                                

which satisfies ,  ,  r r r

dr dt dk
U r U t U k

ds ds ds
      . 

 

Differentiating Equation (7) with respect to s, hence from Equation 

(8) and Equation (6), we have first order positional variation of the striction 

point of the timelike ruled surface expressed in the generator trihedron as 

 

                    ( )s r k                                                  (11)            
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where 

 

1 1
( ), ( ) ( ),s R s s      

 

1
( ), ( ) ( ) .s R s R s     


             (12)                

       

 

4. CENTRAL NORMAL SURFACE 

As the generator trihedron moves along the striction curve, the 

central normal vector generates another ruled surface called the normalia or 

the central normal surface which is defined as 

 

               ( , ) ( ) ( ).TX s u s ut s                                       (13)        

 

The natural trihedron of the normalia consists of three orthonormal 

vectors: t  the central normal vector (spacelike), n the principal normal vector 

(spacelike), and b the binormal vector (timelike) as shown in Figure 2. 

 

Let the hyperbolic angle   be between the timelike vectors k and n. 

Then, we have 

 

    

0 1 0

sinh 0 cosh .

cosh 0 sinh

t r

n t

b k

 

 

     
     

 
     
          

                            (14)      

 

Using t n   and Equation (8) we have 

 

    
1

cosh ,  sinh ,  coth .


   
 

    
 

                   (15) 

 

Substituting the Equations (15) into Equation (8), finally we get 

                                                                                                             

0 1 0
1

1 0 coth

0 coth 0

r r
d

t t
ds

k k





     
     

 
     
          

                            (16)    
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Moreover, the Darboux vector of the generator trihedron is         

                                          

                                 
1

(coth ).rU r k 


                                                   (17) 

 

The natural trihedron consists of the following vectors 

 

                     
1

,  ,  t R n t b n t


                                                         (18) 

 

where  t   is the curvature. The origin of the natural trihedron is a 

striction point of the normalia. The striction curve is defined as 

 

                  ( ) ( ) ( ) ( )T Ts s s t s                                     (19) 

where 

                     
( ), ( )

( )
( ), ( )

T

s t s
s

t s t s




 


 
                                     (20) 

 

which is the distance from the striction point of the normalia to the striction 

point of the timelike ruled surface in the positive direction of the central 

normal vector. Substituting Equation (16) and Equation (11) into Equation 

(20), we obtain 

 

              2( ) ( coth ) .T s sinh                                  (21) 

 

The first-order angular motion property of the natural trihedron may be 

determined by 

 

0 0

0

0 0

t t
d

n n
ds

b b



 



     
     


     
          

                                           (22) 

 

where ,n b    is torsion. The Darboux vector of the natural trihedron is  

 

   
tU t b                                                       (23) 

 



On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with  

Timelike Directrix 
 

 Malaysian Journal of Mathematical Sciences 197 

 

which satisfies ,  ,  t t t

dt dn db
U t U n U b

ds ds ds
      . 

 

Observe that both the Darboux vectors of the generator trihedron and  

the natural trihedron describe the angular motion of the ruled surface and the 

central normal surface. From Eq. (15) and Eq. (8) the curvature   may be 

written as follows 

   
1

.
sinh







                                                 (24) 

 

Differentiating Equation (19) and then substituting Equation (8) and 

Equation (11) into the result, we obtain 

 

 
T T Tt b                                                  (25) 

where 

 

           ,T T t       cosh sinhT     .                      (26) 

 

5. RELATIONSHIP BETWEEN THE FRAMES OF 

REFERENCE 

The orientation of the surface frame relative to the tool frame and the 

generator trihedron is as shown in Figure 2. Let hyperbolic angle between 

bS and A timelike vectors be defined as  , refered as spin angle, we may 

express results in matrix form as 

 

           

O 1 0 0 O

0 sinh cosh .

0 cosh sin

n

b

A S

N S

 

 

    
    


    
          

                        (27) 

 

Using Equation (27), we have 

             

O 1 0 0 O

0 sinh cosh .

0 cosh sinh

n

b

S A

S N

 

 

     
     

  
     
         

                       (28)                                                    
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 Let the hyperbolic angle between the timelike vectors 
bS  and k  be 

defined as  . We have 

 

O 1 0 0

0 cosh sinh .

0 sinh cosh

n

b

r

S t

S k

 

 

     
     


     
         

                                  (29) 

 

Using Equation (27) and Equation (29), we have 

 

O 1 0 0

0 sinh cosh

0 cosh sinh

r

A t

N k

     
     

  
     
             

                              (30) 

     

where     . The solution of  Equation (30) is obtained by 

 

   

1 0 0 O

0 sinh cosh

0 cosh sinh

r

t A

k N

     
     

    
     
           

                             (31) 

 

where   describes the orientation of the end-effector. Because the surface 

normal vector is determined at the TCP which is on the directrix, u is zero. 

Since the orientation vector is coincident with the generator vector, 

substituting Equation (11), Equation (6) into Equation (5), we have 

 

        
2 2 2 2

,  n b

t k k t
S S

 

 

   
 

   
                          (32) 

 

Comparing Equation (32) with Equation (29), we observe that 

 

2 2 2 2
sinh ,  cosh .


 

 


 

   
                    (33) 

 

Substituting Equation (14), Equation (24) into Equation (17) gives 

 

   
rU b                                                          (34) 
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which shows that the binormal vector plays the role of the instantaneous axis 

of rotation for the generator trihedron. 

 

6. DIFFERENTIAL MOTION OF THE TOOL FRAME 

In this section, we obtain expressions of the first and second-order 

positional variation of the TCP. The space curve generated by TCP from 

Equation  (7) is 

                           ( ) ( ) ( )s s R s    .                                          (35) 

 

Differentiating Equation (35) with respect to the arc length, using 

Equation (8) and Equation (11) we obtain the first order positional variation 

of the TCP which is expressed in the generator trihedron as follows: 

 

                   ( ) ( ) .s r k t                                             (36) 

 

Substituting Equation (31) into Equation (36), it gives 

 

( ) ( +µ )O (µsinh + cosh ) (µcosh + sinh )s A N             

 

Differentiating Equation (30) and substituting Equation (16) and 

Equation (31) into the result to determine the first order angular variation of 

the tool frame, we obtain 

 

O 0 sinh cosh O
1

sinh 0

cosh 0

d
A A

ds
N N

        
     

   
     
           

                     (37) 

 

where 

                              
coth

   


.                                           (38) 

 

Moreover the Darboux vector of the generator trihedron is 

 

          
1 1

O cosh sinhOU A N    
 

                      (39) 
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which satisfies ,  ,  O O O

dO dA dN
U O U A U N

ds ds ds
      . 

 

Substituting Equation (31) into Equation (39) gives 

 

                          
1

.OU r k  


                                           (40) 

 

Hence from Equation (38) and Equation (17), we have 

 

                  .O rU r U                                                (41) 

 

Substituting Equation (34) into Equation (41)  gives 

 

                         
OU r b   .                                             (42) 

 

The second order angular variation of the frames may now be obtained by 

differentiating the darboux vectors. Differentiating Equation (23) and 

Equation (34) gives 

 

            ,  .r tU b n U t b                                               (43) 

 

Differentiating Equation (40), substituting Equation (8) and Equation (38) 

into the result, the first order derivatives of the tool frame is rewritten as 

 

           + .OU r t


  


                                                (44) 

 

7. EXAMPLE 

Figure 3 shows the timelike ruled surface parameterized by 

 

                        ( , )  ( 2 cosh sinh ,   2 , 2sinh cosh ).s u s u s s u s u s       

 

It is easy to see that ( )  ( 2 cosh , , 2sinh )s s s s   is the base curve 

(timelike). ( )  (sinh ,  2, cosh )R s s s   is the generator (spacelike). 

Differentiating (s) gives 
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             ( )  ( 2sinh  ,  1, 2 cos  h  ).s s s    

 

The generator trihedron is defined as  

 

  (sinh , 2, cosh ),r s s   

 

 (cosh ,0, sinh ),t s s   

 

( 2sinh , 1, 2 cosh ).k s s    

 

Simple calculation implies that 

 

          = 0 ,  =2 2 , = 3   and   = 2 . 

                           

The natural trihedron is defined by 

 

(cosh ,0, sinh ),t s s   

  
 (sinh ,0, cosh ),n s s   

 
(0, 1,0)b    

 

where = |< , >| =1t t   .  

 

The Darboux vector of generator trihedron is 

 

                           U = (0, 1,0),r  U =(0, 1,0).t   

 

Simple calculation implies that 

 

3
cosh =  ,

9 µ²



  

µ
sinh =  

9 µ²



. 
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Thus, we obtain 
23µ 3 2µ(µ )

=  ,  =  (µ  + )
9 µ² 9 µ² 9 µ²

 
 

  
  

. 

 

Since the spin angle   is zero, so 0  ,   ,     and 2   . 

The approach vector and the normal vector are  

 

1
( cosh 3 2 sinh , 3,3 2 cosh sinh )

9 µ²
A µ s s s µ s   


 

and 

                           
1

( 2 sinh 3cosh , , 2 cosh 3sinh ),
9 µ²

N µ s s µ s s   


 

respectively. 

 

The first order positional variation of the TCP may be expressed in the tool 

frame as 
29+µ

= (2 2 µ')O .
9 µ²

A


  


 

 

Finally the Darboux vector of the tool frame is found as 

 

3 µ
U = O . 

9 µ² 9 µ²
O A N  

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3: The timelike ruled surface with timelike rulings 
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8. CONCLUSIONS 

In this paper, we have presented the basic mathematical and 

computational framework for the accurate motion of the end-effector of a 

robotic device. The paper presents the curvature theory of a general timelike 

ruled surface. The curvature theory of timelike ruled surfaces is used to 

determine the differential properties of the motion of a robot end-effector. 

This provides the properties of the robot end-effector motion in analytical 

form. The trajectory of a robot end-effector is described by a ruled surface 

and a spin angle about the rulling of the ruled surface. 
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